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Abstract. The Green function for a charged spin-1
2 particle with anomalous magnetic moment

in the presence of a plane-wave external electromagnetic field is calculated and shown to be simply
related to the free-particle one.

1. Introduction

The Dirac equation for a charged spin-1
2 particle in an external plane-wave electromagnetic field

was solved by Volkov [1] and the corresponding Green function was obtained by Schwinger
[2]. Vaidyaet al [3] and Vaidya and Hott [4] obtained by an algebraic method the relationship
of this Green function with the free-particle one.

The solution of the Dirac–Pauli equation for a charged spin-1
2 particle with an anomalous

magnetic moment in an external field of a somewhat general type (which includes the plane-
wave field as a special case) was obtained by Chakrabarti [5]. Later Alan and Barut [6],
Sen Gupta [7] and Melikian and Barber [8] considered the same problem. The Green function,
however, has not been calculated before.

In this paper we calculate the Green function for a charged spin-1
2 particle with an

anomalous magnetic moment in an external plane-wave electromagnetic field. We show that
in this case the Green function is also related to that for a free particle in a simple manner. We
also indicate how to solve the Dirac–Pauli equation exactly, thus obtaining a generalization of
the Volkov solution.

This paper is organized as follows. In section 2 we formulate the problem and show how
the charged particle problem can be reduced to the neutral particle one. In section 3 we obtain
the Green function for the neutral particle by Schwinger’s proper time method and show how it
is related to the free-particle one. In section 4 the corresponding results for a charged particle
are obtained. Section 5 contains a summary and a discussion of the results.
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2. Formulation of the problem

The Green function for a charged spin-1
2 particle with an anomalous magnetic moment in an

external electromagnetic fieldF satisfies the equation (we use the notation of Bjorken and
Drell [9]), (

γ µ
(

i
∂

∂x ′µ
− eAµ(x ′)

)
− aσ · F(x ′)−m

)
G(x ′, x ′′) = δ(x ′ − x ′′) (1)

whereσ · F(x ′) = σµνFµν(x
′) andFµν(x ′) = ∂ ′νAµ − ∂ ′µAν whereAµ(x ′) is the vector

potential.
The parametera is related to the anomalous magnetic moment of the particle. The total

magnetic moment is 1− 2a measured in units ofeh̄/2mc.
Writing

G(x ′, x ′′) = 〈x ′|G|x ′′〉 (2)

wherex|x ′〉 = x ′|x ′〉 we obtain

G = (π/− aσ · F −m)−1 (3)

whereπµ = pµ − eAµ(x) and [pµ, xν ] = igµν .
We restrict our attention to the case of a plane-wave field of the form [2]

Fµν = fµνF (ξ) = fµν dA

dξ
(4)

whereξ = n · x. The wavevectorn and the numerical tensorf µν satisfy the equations

n2 = 0

nµf
µν = 0

nµ
∗f µν = 0

(5)

where

∗f µν = 1
2ε
µµαβfαβ (6)

andε0123= 1. In matrix notation (f µν is theµ–ν matrix element off ) we have with a choice
of a normalization,

(f 2)µν = nµnν
(∗f 2)µν = nµnν
(∗ff ) = 0.

(7)

Next using the relation

γ µσαβ = i(gµαγ β − gµβγ α)− εµναβγνγ5 (8)

we have

n/σ · f = 0. (9)

Finally, the anticommutation relations

{σµν, σαβ}+ = 2iεµναβγ5 + 2(gµαgνβ − gµβgνα) (10)
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give

(σ · f )2 = 0. (11)

The problem formulated above can be simplified by using the results of Vaidyaet al [3]
and Vaidya and Hott [4] who have shown that for the external field of equation (4),

π/ = UVp/(UV )−1. (12)

In the coordinate gauge the vector potential may be chosen as

Aµ(x) = fµν(x − x0)
νχ(ξ, ξ0) (13)

where

χ(ξ, ξ0) = A(ξ)

ξ − ξ0
− 1

(ξ − ξ0)2

∫ ξ

ξ0

A(η) dη. (14)

Herex0 is an arbitrary reference point. Then one has

U(ξ, ξ0) = exp
−ie

n · p
[
0(ξ, ξ0)A(ξ, ξ0) · p + 1

2e�(ξ, ξ0)
]

0χ = A(ξ)− (ξ − ξ0)χ

�(ξ, ξ0) =
∫ ξ

ξ0

A2(η) dη − 1

(ξ − ξ0)

(∫ ξ

ξ0

A(η) dη

)2

.

(15)

Also,

V (ξ, p) = exp

[
ie
A(ξ)σ · f

4n · p
]
. (16)

Equation (12) leads to the Green function for a spin-1
2 charged particle in an external plane-wave

field in agreement with Schwinger’s result.
Since

[UV, σ · F ] = 0 (17)

it follows that

G = UV (p/− aσ · F −m)−1(UV )−1. (18)

Thus the Green function for a charged spin-1
2 particle with an anomalous magnetic moment in

a plane-wave field may be obtained from that of a neutral particle with an anomalous magnetic
moment in the same field.

3. Calculation of the Green function for a neutral particle

In this section we calculate the Green function for a neutral spin-1
2 particle with an anomalous

magnetic moment in an external plane-wave electromagnetic fieldF by Schwinger’s proper
time method. We also show that it is related to the free-particle Green function in a simple
manner.

Writing G0 in place ofG in equation (3), we consider the integral representation

G0 = −i(p/− aσ · F +m)
∫ ∞

0
ds e−is(H+m2)

= −i
∫ ∞

0
ds e−is(H+m2)(p/− aσ · F +m) (19)
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where

−H = (p/− aσ · F(x))2. (20)

For a plane wave, equations (8) and (11) give

−H = p2 + 4aF(ξ) ∗fµνpµγ νγ5. (21)

Next, defining〈x ′, s| = 〈x ′| exp(−isH) the transformation function〈x ′, s|x ′′, 0〉 satisfies the
differential equation

i∂s〈x ′, s|x ′′, 0〉 = 〈x ′, s|H |x ′′, 0〉. (22)

To evaluate the matrix element on the right-hand side we must solve the equations of motion
for thes(proper time) dependent operators and obtain the evolution operatorH in ans-ordered
form. This will be done next. In the following we omit the time argument for quantities at
time zero.

The equations of motion are

d

ds
pµ(s) = −4anµF ′(ξ(s)) C(s)

d

ds
γ5(s) = −8iaF(ξ(s)) C(s) γ5(s)

d

ds
γ µ(s) = −8iaF(ξ(s)) ∗f µνpν(s) γ5(s)

d

ds
xµ(s) = 2pµ(s) + 4aF(ξ(s)) ∗f µνγν(s) γ5(s)

(23)

where we have defined

C(s) = ∗f µνpµ(s) γν(s) γ5(s). (24)

The operatorC has the property

C(s)2 = (n · p(s))2 (25)

where as usual we do not write the unit matrix explicitly on the right-hand side. Using the
equations of motion one can verify thatC is a constant of motion. A simpler proof is the fact
that it commutes withH . Obviously, we also have

n · p(s) = n · p (26)

as confirmed by the first equation of motion. The last equation of the set gives

d

ds
ξ(s) = 2n · p

ξ(s) = ξ + 2n · ps
(27)

which gives

[ξ(s), ξ ] = 0. (28)

Integrating the first equation of the set (23) gives

pµ(s)− pµ = −2a(n · p)−1(F (ξ(s)− F(ξ)) Cnµ. (29)

Next, defining

η(s) = −4iaC(n · p)−1(A(ξ(s)− A(ξ)) (30)
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we obtain from the second and third equations

γ5(s) = γ5exp[−η(s)]
γ µ(s) = γ µ + ∗f µνpνC−1[exp(η(s)− 1)] γ5.

(31)

Finally, the last equation of the set gives

xµ(s)− xµ = 2pµs + 4aC(n · p)−1F(ξ) snµ

−i/2(n · p)−1[nµ − ∗f µνγνγ5C(n · p)−1][1 − exp(−η)]. (32)

Using the last equation we obtain

2sC = ∗f µν(x(s)− x)µγνγ5 (33)

and

4s2p2 = (x(s)− x)2 − 16aCF(ξ) s2. (34)

Substitution of these results into equation (20) gives

−H = (x(s)− x)2
4s2

(35)

which may be put in an ordered form by using equation (32), which gives

[xµ(s), xµ] = 8is. (36)

Hence

i∂s〈x ′, s|x ′′, 0〉 = −
[
(x ′ − x ′′)2

4s2
+

2i

s

]
〈x ′, s|x ′′, 0〉. (37)

Integrating the above equation we have

〈x ′, s|x ′′, 0〉 = −i

(4πs)2
exp

[
−i
(x ′ − x ′′)2

4s

]
8(x ′, x ′′) (38)

where the multiplicative constant has been chosen to give the correct behaviour for smalls

(δ(x ′ −x ′′)) except for the presence of8. The (matrix) function8(x ′, x ′′)may be determined
by using equation (37) and the equations

〈x ′, s|pµ(s)|x ′′, 0〉 = i∂ ′µ〈x ′, s|x ′′, 0〉
〈x ′, s|pµ|x ′′, 0〉 = −i∂ ′′µ〈x ′, s|x ′′, 0〉.

(39)

Using equations (29), (32) and (38) we obtain

i∂ ′µ8 +82a

〈
C

n · p
〉
F(ξ ′) nµ −8 i

2(ξ ′ − ξ ′′)ζ
µ(1− exp〈η〉) = 0 (40)

where we have defined〈
C

n · p
〉
=
∗f µν(x ′ − x ′′)µγνγ5

(ξ ′ − ξ ′′)
ζµ = nµ − ∗f µνγνγ5

〈
C

n · p
〉

〈η〉 = −4ia

〈
C

n · p
〉
(A(ξ ′)− A(ξ ′′)).

(41)
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After some effort one obtains

∂ ′µ(8 e〈η〉/2) = 0. (42)

A similar calculation leads to

∂ ′′µ(8 e〈η〉/2) = 0. (43)

Hence

8(x ′, x ′′) = exp(2ai)

[
A(ξ ′)− A(ξ ′′)
(ξ ′ − ξ ′′)

∗f µν(x ′ − x ′′)µγνγ5

]
. (44)

From the form of8(x ′, x ′′) it is clear that whens goes to zero the transformation function
〈x ′, s|x ′′, 0〉 goes toδ(x ′ − x ′′). Thus the Green function of a neutral spin-1

2 particle in a
plane-wave external electromagnetic field is given by

G0(x
′, x ′′) = −(m + iγ µ∂ ′µ − aσ · F(ξ ′))8(x ′, x ′′)

×
∫ ∞

0
ds

exp
(−ism2

)
(4πs)2

exp

[
−i
(x ′ − x ′′)2

4s

]
= −8(x ′, x ′′)

∫ ∞
0

ds
exp

(−ism2
)

(4πs)2

× exp

[
−i
(x ′ − x ′′)2

4s

]
(m− iγ µ∂ ′′µ − aσ · F(ξ ′′)) (45)

where in the last two lines thex ′′-derivatives act on all thex ′′-dependent terms on the left. The
Green function can be rewritten in a more compact form as follows. We showed that

〈x ′, s|x ′′, 0〉 = 8(x ′, x ′′)〈x ′| exp
(
isp2

)|x ′′〉. (46)

Further, the form of the function8(x ′, x ′′) allows us to rewrite the last equation in the form

〈x ′, s|x ′′, 0〉 = W(x ′, i∂ ′)〈x ′| exp
(
isp2

)|x ′′〉W−1(x ′′, i∂ ′′) (47)

where the derivatives act on〈x ′| exp
(
isp2

)|x ′′〉 and we have defined

W(x, p) = exp

(
2ai

n · p
)
CA(ξ). (48)

Thus

〈x ′, s|x ′′, 0〉 = 〈x ′|W(x, p)exp
(
isp2

)
W−1(x, p)|x ′′〉. (49)

In fact, it is trivial to see that

WpµW−1 = pµ +
2anµ

n · p CF(ξ) (50)

so that

−H = (p/− aσ · F)2 = Wp/2W−1. (51)

Hence

G0(x
′, x ′′) = −

∫ ∞
0

ds exp
(−ism2

)
(4πs)2

×W(x ′, i∂ ′)
(
m +

γ µ(x ′ − x ′′)µ
2s

)
exp

[
−i
(x ′ − x ′′)2

4s

]
W−1(x ′′,−i∂ ′′).

(52)
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Equation (51) suggests that one may directly relate the inverses of the operators
p/− aσ · F −m andp/−m. One can verify that

WγµW
−1 = γµ + 2

i sin[2aA(ξ)]

n · p (∗fp)µ

[
cos[2aA(ξ)] +

iC

n · p sin[2aA(ξ)]

]
γ5 (53)

so that

Wn/W−1 = n/. (54)

Hence using equation (50)

Wp/W−1 = p/ +
2an/C

n · p F(ξ). (55)

Since

n/C = − 1
2n · p σ · f (56)

we obtain

W(p/−m)−1W−1 = (p/− aσ · F −m)−1. (57)

Although the above equation is true it would be difficult to obtain it without the use of the
second-order formalism and the proper time method.

4. Calculation of the Green function for a charged particle

In section 2 we showed that the Green function for a charged fermion with an anomalous
magnetic moment in a plane-wave electromagnetic field can be obtained from that of a neutral
fermion with an anomalous magnetic moment in the same field. Now we have shown that the
latter can be obtained from the free-particle Green function. Using equations (57) and (12) we
obtain

G = UVW(p/−m)−1(UVW)−1. (58)

An equivalent form of equation above may be obtained by using the explicit form of the
operatorW . We have

W = cos[2aA(ξ)] +
iC

n · p sin[2aA(ξ)]. (59)

We may define the operatorsD+ andD− where

(p/−m)σ · f = 2(D+ − C)
σ · f (p/−m) = 2(D− − C).

(60)

Thus
D+ = −if µνpνγµ − 1

2mσ · f
D− = if µνpνγµ − 1

2mσ · f.
(61)

It is easy to verify that

T−(p/−m)−1T+
−1 = (p/− aσ · F −m)−1 (62)

where

T+ = exp

[
2aiD+A(ξ)

n · p
]

T− = exp

[
2aiD−A(ξ)

n · p
]
.

(63)

Thus

G = UVT−(p/−m)−1UVT+
−1. (64)
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5. Summary and discussion

In this paper we have obtained the Green function for a charged spin-1
2 particle with an

anomalous magnetic moment in an external plane-wave electromagnetic field. We also
showed how it is related to the free-particle Green function. We considered the case of plane
polarization. Corresponding results for the case of arbitrary polarization are easily obtained.

We can use our results to construct a complete set of solutions of the Dirac–Pauli equation
in the form

9(x) = UVW(x, i∂)90(x). (65)

where90(x) satisfies the free Dirac equation. Thus we have obtained a generalization of the
Volkov solution. An alternative form of the solution is obtained if we use equation (62), and
change the signs ofa andm to obtain

T+(p/−m)T−−1 = p/−m− aσ · F (66)

so that

9(x) = UVT−(x, i∂)90(x) (67)

where the equivalence of the two forms of the solution becomes evident when we use
equation (60). Equation (67) corresponds to the result of Alan and Barut [6] when the Weyl
representation for the Dirac matrices is used.

As a final remark we observe that equation (65) also suggests that our use of the formal
operator(n ·p)−1 is justified by the observation that it needs to be well defined on the solutions
of the free Dirac equation. This is true for them 6= 0 case.
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